逆波兰式 定义 一个表达式E的后缀形式可以如下定义:
(1)如果E是一个变量或常量,则E的后缀式是E本身。
(2)如果E是E1 op E2形式的表达式,这里op是如何二元操作符,则E的后缀式为E1’E2’ op,这里E1’和E2’分别为E1和E2的后缀式。
(3)如果E是(E1)形式的表达式,则E1的后缀式就是E的后缀式。
如:我们平时写a+b,这是中缀表达式,写成后缀表达式就是:ab+
(a+b)*c-(a+b)/e的后缀表达式为:
(a+b)*c-(a+b)/e
→((a+b)*c)((a+b)/e)-
→((a+b)c*)((a+b)e/)-
→(ab+c*)(ab+e/)- …